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1. Supplementary Methods

1.1 Patient cohorts

This study describes two novel subtypes of NPM1 mutated AML patients. These subtypes

are called primitive and committed, respectively. For the discovery and validation of

these novel subtypes we have used five different AML patient cohorts. Details about

these patient cohorts are available in table 1.

Cohort Name # Samples Source

UHN 77 Internal

TCGA 48 [1]

KI 79 [2]

Beat-AML 77 [3]

Leucegene 97 [4]

Supplementary Table 1: Description of AML datasets used in the study

1.2 Clustering of individual cohorts

Clustering and subtype discovery pipeline is shown in figure 1. Unsupervised machine

learning (clustering) was performed on each patient cohort separately. To find robust

clusters we applied a consensus clustering approach [5]. Using the consensus clustering

approach, clustering is performed on the randomly selected part of the data. This is

done repeatedly to ensure robust clustering. In the final step results from all clustering

rounds are aggregated to create a final consensus matrix. This process is done assuming
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the possible number of clusters in the dataset ranging from 2 to 8. To find the optimal

number of clusters we used silhouette width which measures how well data points are

clustered. A higher value of silhouette width indicates a better quality of clustering.

Figure 2 shows silhouette width in each dataset at different numbers of clusters. Here

we observe that for all datasets, at K = 2 (number of clusters) the silhouette width is

maximum. Therefor two clusters is the optimal partition for all five datasets.

Mer et al. 7



UHN cohort 
(N=77)

Clustering

TCGA cohort 
(N=48)

Clustering

KI cohort 
(N=79)

Clustering

Leucegene cohort
(N=97)

Clustering

BeatAML cohort 
(N=77)

Clustering

Meta clustering using CoINcIDE

T1

T2Cellular deconvolution using PERT

Primitive: 
This cluster is 
enriched in stem 
cells.

Committed:
This cluster has 
comparatively less 
stem cells and more 
hematopoietic 
differentiation.

C1 C2

Supplementary Figure 1: Clustering and subtype discovery pipeline. Clustering was
performed on each dataset separately. Next clusters from different cohorts were merged
together using the CoINcIDE framework. This provided two robust clusters. Samples in
both clusters were analyzed using the PERT cellular deconvolution method. PERT analysis
showed that one cluster is enriched in stem cells, hence termed as primitive and the other
cluster is termed as committed.
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Supplementary Figure 2: Silhouette width for clusters in all datasets. The silhouette
width estimates the mean distance between clusters. The average silhouette width for
different numbers of clusters (K) in four datasets. A higher silhouette width indicates a
better quality of clustering. At K=2 silhouette width is highest for all five datasets.

1.3 Meta clustering

From the previous clustering step, we obtained two clusters in each dataset. This is

indicated as red and blue color branches of the dendrogram in figure 1. Although using

the silhouette width we have established that there are two clusters in each dataset

(figure 2), the question remains which cluster from a dataset is more similar to a cluster

from the other dataset. For example, whether the red cluster from the UHN dataset is

more analogous to the red or blue cluster from the TCGA dataset. To resolve this, we

mapped clusters from each cohort into clusters from other cohorts. This is done using

the CoINcIDE framework [6]. This approach allowed us to find clusters across datasets
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without the need of any batch correction technique or between-dataset transformations.

From the CoINcIDE based meta clustering we deduce two clusters, indicated as C1 and

C2 in figure 1.

1.4 Subtype annotation

After establishing two distinct clusters from meta-clustering (called C1 and C2), we

further characterized these clusters. For this purpose we used the PERT cellular

deconvolution algorithm [7]. The PERT algorithm is specifically designed for deconvolution

of human hematopoietic samples. It works by comparing a given sample’s gene expression

profile to several well established reference cell population. Deconvolution through this

algorithm indicates that one meta-cluster is enriched in stem cells. The enrichment

of stem cells indicates that this cluster is still in the primitive state of haematopoietic

stemness [8, 9]. Therefore this meta-cluster is named primitive. Our analysis also

indicates that the other cluster has less stem cells and more haematopoietic differentiation.

This implies a rigid commitment to haematopoietic differentiation hierarchy, accordingly

this cluster is named committed.

Mer et al. 10



2. Supplementary Discussion

2.1 Subtype and Mutations

We analyzed the association between subtypes and mutation status of key genes.

Oncoprint in the main Figure 2C (in manuscript) shows the mutation status of genes

along with predicted primitive or committed subtypes of samples. Matthews correlation

coefficient (MCC) analysis between subtypes and mutation shows a weak association

(figure 3). For FLT3-ITD and DNMT3A, a MCC value of 0.32 and −0.16 was observed

respectively. However Chi-square test based FDR for FLT3-ITD, DNMT3A, NRAS and

KRAS is statistically significant (FDR < 0.05, for details see Supplementary Table

S6-S17). Together these analyses indicate that there is a weak but statistically significant

association between subtypes and few key genes. This prompted us to ask the question

if subtypes are solely driven by mutations.

Subtype and Mutation Frequency

First we investigated whether samples belonging to one of the subtypes have higher

mutation frequency (figure 4). We found that primitive and committed subtypes are not

different in terms of mutation frequency (two-sided Wilcoxon rank-sum test p− value =

0.9).

Subtype and Mutation Allele Burden

Next we analyzed if allele burden is associated with subtypes (figure 5 and 6). Allele

burden was defined as the ratio of mutant versus wild type reads of the gene [10, 11].
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Supplementary Figure 3: Matthews correlation coefficient (MCC) between mutation
status of different genes and subtypes.
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Supplementary Figure 4: Violin plot shows frequency of mutations in primitive and
committed subtypes. X-axis shows primitive and committed subtypes and Y-axis
represents frequency of mutations. Analysis shows that primitive and committed
subtypes have the same frequency of mutation (two-sided Wilcoxon rank-sum test
p− value = 0.9).

Mer et al. 13



Such data was available only for the BeatAML cohort. Figure 5 and figure 6 show allele

burden for FLT3-ITD and DNMT3A, respectively. In both cases we did not find any

statistically significant difference in allele burden in primitive and committed subtypes

(two-sided Wilcoxon rank-sum test p− value > 0.05 for both FLT3-ITD and DNMT3A).

Wilcoxon, p = 0.26
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Supplementary Figure 5: Allele burden of FLT3-ITD in primitive and committed
subtypes. The allele burden of FLT3-ITD is not associated with primitive and committed
subtypes (two-sided Wilcoxon rank-sum test p− value = 0.26).

Multivariate Model for Subtypes

Next we trained a logistic regression model to predict the subtype label from mutation

data. Performance of the model was assessed using leave-one-dataset-out cross-validation.

Figure 7 shows performance of the model during the cross-validation using the receiver

operating characteristic (ROC) curve. Multivariate mutation model shows moderate

performance in predicting subtypes (ROCAUC = 0.62), indicating that mutations alone
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Supplementary Figure 6: Allele burden of DNMT3A in primitive and committed
subtypes. The allele burden of DNMT3A is not associated with primitive and committed
subtypes (two-sided Wilcoxon rank-sum test p− value = 0.77).

cannot define primitive and committed subtypes adequately.
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Supplementary Figure 7: Receiver Operating Characteristic (ROC) curve for
multivariate mutation analysis. Logistic regression models were trained on mutation
information to predict the subtypes. For the training and testing of the model a
leave-one-dataset-out cross-validation strategy was applied. ROC AUC (area under
curve) was computed to assess the performance of the model. Mutation based models
show moderate performance in predicting subtypes (AUC=0.62).

Mer et al. 16



2.2 Subtype and Mutation Gene Signatures

Differential gene expression analysis was performed using the DESeq2 R package

[12, 13]. Figure 8 shows the result of differential gene expression analysis for primitive

versus committed subtypes. Top differentially expressed genes such as CD14, MARCO,

VCAN, FAM84A etc. are annotated in the figure. Figure 9 shows the result of differential

gene expression analysis for FLT3-ITD mutated versus wild type samples. In this figure,

top differentially expressed genes from subtypes (figure 8) are annotated. Similarly

the volcano plot in figure 10 shows the result for DNMT3A mutated versus wild type

samples.

Genes that are differentially expressed between primitive-committed subtypes are

not differentially expressed between FLT3-ITD mutated-wild type groups. Same is true

for DNMT3A mutated-wild type groups. This is further evident from figure 11, figure 12,

figure 13 and figure 14, which show expression of genes C1QA, MARCO, ZNF521 and

CDH2 in individual patient cohorts. Venn diagrams in figure 15 summarize the number

of differentially expressed genes in subtype and mutation groups.

From these results it is evident that primitive-committed subtypes have unique gene

signature which are not captured by FLT3-ITD or DNMT3A mutations.
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Supplementary Figure 8: Volcano plot for primitive vs. committed subtypes.
Differential gene expression analysis was performed between primitive and committed
subtypes. The x-axis represents log2 fold change and y-axis shows log10 FDR values for
genes. Each point in the plot represents one gene. Points in lime color indicate genes
with high fold change and FDR < 0.01. Top genes are annotated in the plot.
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Supplementary Figure 9: Volcano plot for FLT3-ITD mutated vs. wild type samples.
The x-axis represents log2 fold change and y-axis shows log10 FDR values for genes.
Each point in the plot represents one gene. Points in lime color indicate genes with high
fold change and FDR < 0.01. Genes specific to the primitive and committed subtypes
(see Supplementary Figure 8) are annotated in the plot.
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Supplementary Figure 10: Volcano plot for DNMT3A mutated vs. wild type samples.
The x-axis represents log2 fold change and y-axis shows log10 FDR values for genes.
Each point in the plot represents one gene. Points in lime color indicate genes with high
fold change and FDR < 0.01. Genes specific to the primitive and committed subtypes
(see Supplementary Figure 8) are annotated in the plot.
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Supplementary Figure 11: Expression of C1QA in four datasets. Each boxplot represents
expression of the gene (TPM values) in a group (TCGA primitive n = 23; TCGA committed
n = 25; KI primitive n = 55; KI committed n = 24; BeatAML primitive n = 43; BeatAML
committed n = 39; Leucegene primitive n = 60; Leucegene committed n = 38). First barplots
are for subtypes, second barplots for FLT3-ITD and third barplots for DNMT3A groups.
The values on the top of the barplots indicate FDR of differential gene expression analysis
(two-sided t-test). In the boxplots, middle line indicates median. The lower and upper hinges
of the boxes correspond to the 25th and 75th percentiles. The whiskers represent 1.5 x IQR
from the hinge (where IQR is the inter-quartile range). Data beyond the end of the whiskers
are outlying points that are plotted individually.
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Supplementary Figure 12: Expression of MARCO in four datasets. Each boxplot
represents expression of the gene (TPM values) in a group (TCGA primitive n = 23; TCGA
committed n = 25; KI primitive n = 55; KI committed n = 24; BeatAML primitive n = 43;
BeatAML committed n = 39; Leucegene primitive n = 60; Leucegene committed n = 38).
First barplots are for subtypes, second barplots for FLT3-ITD and third barplots for DNMT3A
groups. The values on the top of the barplots indicate FDR of differential gene expression
analysis (two-sided t-test). In the boxplots, middle line indicates median. The lower and
upper hinges of the boxes correspond to the 25th and 75th percentiles. The whiskers
represent 1.5 x IQR from the hinge (where IQR is the inter-quartile range). Data beyond
the end of the whiskers are outlying points that are plotted individually.
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Supplementary Figure 13: Expression of ZNF521 in four datasets. Each boxplot
represents expression of the gene (TPM values) in a group (TCGA primitive n = 23; TCGA
committed n = 25; KI primitive n = 55; KI committed n = 24; BeatAML primitive n = 43;
BeatAML committed n = 39; Leucegene primitive n = 60; Leucegene committed n = 38).
First barplots are for subtypes, second barplots for FLT3-ITD and third barplots for DNMT3A
groups. The values on the top of the barplots indicate FDR of differential gene expression
analysis (two-sided t-test). In the boxplots, middle line indicates median. The lower and
upper hinges of the boxes correspond to the 25th and 75th percentiles. The whiskers
represent 1.5 x IQR from the hinge (where IQR is the inter-quartile range). Data beyond
the end of the whiskers are outlying points that are plotted individually.
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Supplementary Figure 14: Expression of CDH2 in four datasets. Each boxplot represents
expression of the gene (TPM values) in a group (TCGA primitive n = 23; TCGA committed
n = 25; KI primitive n = 55; KI committed n = 24; BeatAML primitive n = 43; BeatAML
committed n = 39; Leucegene primitive n = 60; Leucegene committed n = 38). First barplots
are for subtypes, second barplots for FLT3-ITD and third barplots for DNMT3A groups.
The values on the top of the barplots indicate FDR of differential gene expression analysis
(two-sided t-test). In the boxplots, middle line indicates median. The lower and upper hinges
of the boxes correspond to the 25th and 75th percentiles. The whiskers represent 1.5 x IQR
from the hinge (where IQR is the inter-quartile range). Data beyond the end of the whiskers
are outlying points that are plotted individually.
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Subtype FLT3−ITD

997

(86.02%)
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119

(10.27%)

(a)

Subtype DNMT3A

1023

(94.46%)

17
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43
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Supplementary Figure 15: Venn diagrams show number of differentially expressed
genes in subtypes (primitive versus committed) and mutation groups (mutated versus
wildtype). In total 1040 genes are differentially expressed between primitive and
committed subtypes. Figure (a) shows that between FLT3-ITD mutated and wild
type, 162 genes are differentially expressed out of which only 43 genes are common
with subtype specific differentially expressed genes. Figure (b) shows that between
DNMT3A mutated and wild type, 60 genes are differentially expressed out of which only
17 genes are common with subtype specific differentially expressed genes.
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2.3 Subtype and Mutations Pathway Analysis

Gene set enrichment analysis was performed for subtypes, FLT3-ITD mutation and

DNMT3A mutation. Figure 16 shows pathways that are significantly enriched (FDR <

0.05) in subtypes. It also shows the corresponding enrichment score and p-value of

selected pathways (enriched in subtypes), in the FLT3-ITD and DNMT3A mutation

groups. Pathways that have a high enrichment score for subtypes are not enriched

in FLT3-ITD or DNMT3A mutation groups (FDR > 0.05 for all pathways). These

results show that subtypes have uniquely activated pathways compared to FLT3-ITD

or DNMT3A mutation.
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Supplementary Figure 16: Dotplots for pathway enrichment analysis. Top pathways
that are enriched in subtypes (FDR < 0.05) are shown on the y-axis. The x-axis
represents enrichment score for the pathway. Size of dots is proportional to the number
of genes in the pathway. Color of the dots represents FDR value for the pathway.
First panel shows enrichment of the pathways in subtypes (primitive versus committed).
Dotplots in second panel show enrichment of the pathways in FLT3-ITD mutated versus
wild type groups. Third panel shows enrichment of the pathways in DNMT3A mutated
versus wild type groups. Pathways that are enriched in subtypes do not show significant
enrichment in FLT3-ITD or DNMT3A groups. This indicates that subtypes are driven by
distinct pathways.
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Supplementary Figure 17: Upset plot showing differentially expressed genes across
subtypes and five datasets.
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Supplementary Figure 18: Network based visualization of pathway enrichment analysis
for subtypes (related to main Figure-2C). Each node represents a pathway and the edge
represents common genes between pathways. Size of the nodes and edges is proportional
to the number of genes in the pathway and common genes, respectively. Pathways
represented by each node are listed in the table.
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(A) (B) (C)

(D) (E) (F)

(G)

Supplementary Figure 19: Comparison of proportion of COREs at different genomic
regions in primitive versus committed subtypes in the ATAC-seq profile. (A) Promoters
(FDR=0.11), (B) introns (FDR=0.47), (C) intergenic region (FDR=0.02) (D) immediate
downstream (FDR=1), (E) 5’ UTR (FDR=1), (F) Exons (FDR=0.47) and (G) 3’ UTR
(FDR=0.47)
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Supplementary Figure 20: Quantification and t-SNE visualization of normal non-leukemic FlowSom metaclusters in
representative primitive versus committed FLT3-ITD− and FLT3-ITD+ cases of NPM1 mutated AML. (A) Box and
whisker plots of non-leukemic metaclusters that were differentially abundant between the primitive and committed
groups in the diffcyt analysis [14] (n = 9 in primitive and n = 8 in committed group). The Q-values for each from the
diffcyt-DA-edgeR analysis are indicated. In the boxplots, middle line indicates median. The lower and upper hinges
of the boxes correspond to the 25th and 75th percentiles. The whiskers represent 1.5 x IQR from the hinge (where
IQR is the inter-quartile range). Data beyond the end of the whiskers are outlying points that are plotted individually.
(B) t-SNE plots are colored in the Z dimension by FlowSom [15] Metacluster ID or the indicated cell surface markers.
The intensity scale (lowest: dark blue; highest: red) for each surface marker is shown on the right of each plot. From
these plots it can be seen that these metaclusters consist of CD45hi cells that are either CD3+ CD4+ T-cells (#6),
CD3+ CD4− T-cells (#9), CD19+ B-cells (#12) or CD3− CD56+ CD16+, NK cells (#25).
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Supplementary Figure 21: Quantification and t-SNE visualization of leukemic FlowSom [15] metaclusters in
representative primitive versus committed FLT3-ITD− and FLT3-ITD+ cases of NPM1 mutated AML. (A) t-SNE
plots are colored in the Z dimension by FlowSom [15] Metacluster ID or the indicated myelomonocytic markers
typically expressed by AML. The intensity scale (lowest: dark blue; highest: red) for each surface marker is shown
on the right of each plot. (B) Box and whisker plots show abundance of the clusters that were significantly higher
in primitive cases (3 and 8) compared to those that were significantly higher in committed cases (1, 7, 16, 22 and
24). P-value computed by Mann-Whitney and n = 9 in primitive and n = 8 in committed group. (C) Box and whisker
plots show abundance of metacluster 3 in FLT3-ITD− (n = 8) and FLT3-ITD+ (n = 9) cases. P-value computed by
Mann-Whitney. (D) Box and whisker plots show abundance of the indicated metaclusters primitive versus committed
in FLT3-ITD+ cases (n = 5 in primitive and n = 4 in committed group). Q values were computed in Prism by multiple
t-tests with FDR correction by the two-stage step-up method of Benjamini, Hochberg and Yekutieli. Q-values < 0.05
were considered significant. In the boxplots of figure (B), (C) and (D), middle line indicates median. The lower and
upper hinges of the boxes correspond to the 25th and 75th percentiles. The whiskers represent 1.5 x IQR from
the hinge (where IQR is the inter-quartile range). Data beyond the end of the whiskers are outlying points that are
plotted individually.
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Supplementary Figure 22: Kaplan-Meier plot stratified by primitive and committed
subtype in the UHN, TCGA, KI, BeatAML and Leucegene cohort. Log-rank
(Mantel-Cox) test p-values are indicated for each dataset in the plot.
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2.4 Drug Prioritization

We aimed to select drugs which could be potentially effective for the primitive subtype

and which can be further evaluated using ex vivo drug screening. Towards this end

we utilized the CCLE-CTRPv2 dataset [16]. The pipeline for drug ranking is shown in

figure 23.

Predicted subtype label 
for cell lines

Elastic Net model

CCLE-CTRPv2 RNAseq 
(N=935)

Compute correlation 
with patient data

Subset samples with 
correlation >0.60

Selected cell lines 
(N=174)

Association between 
subtype & drug AUC 

Drug ranking

Train Elastic 
Net model

UHN patient 
data (N=77)

Supplementary Figure 23: Pharmacogenomic pipeline for drug ranking.
CCLE-CTRPv2 pharmacogenomic data was used for the

The data was downloaded and processed using the R PharmacoGx package version 3.8 [17,

18]. The CCLE-CTRPv2 dataset contains gene expression data from 935 cell lines

encompassing 25 different tissue types. However AML cell lines constitute only a small

amount (< 30) of all cell lines. Furthermore not all of these cell lines have been tested
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for a large number of drugs. Due to these limitations we decided to include all those

cell lines in the analysis which have a high correlation with the UHN dataset. Figure 24

shows a histogram of correlations between CCLE-CTRPv2 cell lines and a centroid of

the UHN dataset. We selected only cell lines with a correlation coefficient > 0.60 for

further analysis (174 cell lines in total). Notably all cell lines with high correlation to the

patient cohort are haematopoietic cell lines. Given the unique nature of blood cancers, it

is not surprising that cell lines belonging to solid tumors do not show a strong correlation

to AML patient data.
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Supplementary Figure 24: Cell lines to patient correlation. Histogram shows
distribution of Pearson correlation coefficient between CCLE-CTRPv2 cell lines and
UHN patient data.

These selected cell lines were classified into primitive and committed subtype using

a Elastic Net machine learning model. For this purpose first we trained the model on

the UHN dataset to predict the primitive and committed subtype from gene expression

data (figure 25). This model was directly applied to the cell line gene expression data.
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Next we computed the association between predicted cell line labels and area under

curve (AUC) values for each drug using the nonparametric measure concordance index

(CI). Supplementary data file X sheet-2 shows results of this association analysis. We

used these CI values to rank the drugs from potentially most to least effective on the

primitive subtype. The ranked list of compounds contained 448 compounds which

we further narrowed down as shown in figure 26. First we created a subset of the

drug list by selecting only FDA approved drugs. Next we removed those compounds

whose target genes are not differentially expressed between primitive and committed

subtype. Evidently the resulting list was enriched with kinome class of drugs, therefore

we decided to focus on this class of drugs only. We used the p-value cutoff of 0.1 to

further narrow down the drugs. From the resulting list, five compounds were selected

based on their availability. These compounds are Ruxolitinib, Sunitinib, Sorafenib,

Quizartinib and Imatinib. We also included Dasatinib as a negative control. In total

six drugs were selected for ex vivo drug screening.
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Supplementary Figure 25: Training and validation of supervised multivariate machine
learning model on different AML patient cohorts. For each dataset, the left side
represents samples with primitive and committed labels and the predicted labels are
represented on the right side.
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p-value < 0.1 (N=25)

Availability (N=6)

Negative control 
p-value > 0.1 (N=1)

● Ruxolitinib
● Sunitinib
● Sorafenib
● Quizartinib
● Imatinib
● Dasatinib

Kinome class drugs (N=63)

Supplementary Figure 26: Drug prioritization pipeline. For drug prioritization we used
the CCLE-CTRPv2 dataset using the
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Supplementary Figure 27: Activity of three different kinase inhibitors Quizartinib,
Imatinib and Dasatinib in two different ex vivo screenings. Top panel shows drug-dose
response curves for patients and second panel shows AUC values for ex vivo screening
in UHN patient cohort. The third panel shows response of the drug in BeatAML patient
cohort. All p-values are for two-sided Wilcoxon rank-sum test. The primitive subtype
is more sensitive towards Quizartinib in the UHN and BeatAML cohort. For the UHN
cohort, n = 10 in primitive and n = 10 in committed subtype. For the BeatAML cohort,
n = 33 in primitive and n = 29 in committed subtype. In the boxplots, middle line
indicates median. The lower and upper hinges of the boxes correspond to the 25th
and 75th percentiles. The whiskers represent 1.5 x IQR from the hinge (where IQR is
the inter-quartile range). Data beyond the end of the whiskers are outlying points that
are plotted individually.
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Supplementary Figure 28: FLT3-ITD status and the response of Sorafenib, Sunitinib,
Quizartinib, Ruxolitinib, Imatinib and Dasatinib in the UHN dataset. Boxplots show AUC
values for ex vivo screening in the UHN cohort (n = 10 in FLT3-ITD positive and n =
10 in FLT3-ITD negative group). In the boxplots, middle line indicates median. The
lower and upper hinges of the boxes correspond to the 25th and 75th percentiles. The
whiskers represent 1.5 x IQR from the hinge (where IQR is the inter-quartile range).
Data beyond the end of the whiskers are outlying points that are plotted individually.
Two-sided Wilcoxon rank-sum test was used for pairwise comparison and p-vales are
indicated in the plot.
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Supplementary Figure 29: Leukemia stem cell score (LSC) and the response of
Sorafenib, Sunitinib, Quizartinib, Ruxolitinib, Imatinib and Dasatinib in the UHN dataset.
Boxplots show AUC values for ex vivo screening in the UHN cohort (n = 8 in LSC high
and n = 12 in LSC low group). In the boxplots, middle line indicates median. The
lower and upper hinges of the boxes correspond to the 25th and 75th percentiles. The
whiskers represent 1.5 x IQR from the hinge (where IQR is the inter-quartile range).
Data beyond the end of the whiskers are outlying points that are plotted individually.
Two-sided Wilcoxon rank-sum test was used for pairwise comparison and p-vales are
indicated in the plot.
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Supplementary Figure 30: Kaplan-Meier plot of overall survival for primitive and
committed subtypes and FLT3-ITD status. Log-rank (Mantel-Cox) test p-values is
indicated in the plot.
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Supplementary Figure 31: Stratification of drug sensitivity by subtype and FLT3-ITD
status for sorafenib and sunitinib in the BeatAML cohort. Ex vivo drug screening was
performed on n = 62 AML patient samples (primitive FLT3-ITD positiven = 25; primitive
FLT3-ITD negative n = 18; committed FLT3-ITD positiven = 7 ; committed FLT3-ITD
negative n = 32). Two-sided Wilcoxon rank-sum test was used for pairwise comparison
and p-value is shown on top of the boxplots. Non-parametric Kruskal-Wallis test was
used for comparing multiple groups. In the boxplots, middle line indicates median. The
lower and upper hinges of the boxes correspond to the 25th and 75th percentiles. The
whiskers represent 1.5 x IQR from the hinge (where IQR is the inter-quartile range).
Data beyond the end of the whiskers are outlying points that are plotted individually.
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Supplementary Figure 12: Leave one dataset out cross-validation of the subtyping. (A), (B), (C), (D) and (E) 
represent clustering results while leaving Leucegene, BeatAML, KI, TCGA and UHN dataset out respectively. 
The size of the nodes are proportional to the number of the patients in the cluster and are colored according 
to the dataset. The edge width is proportional to the correlation between clusters. 
  

Supplementary Figure 32: Leave one dataset out cross-validation meta clustering of
the data. (A), (B), (C), (D) and (E) represent clustering results while leaving Leucegene,
BeatAML, KI, TCGA and UHN dataset out respectively. The size of the nodes is
proportional to the number of patients in the cluster and nodes are colored according
to the dataset. The edge width is proportional to the correlation between clusters.
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Supplementary Table 2: Subtypes vs. Age contingency table. Pearson’s chi-square
test p-values are indicated on the top of the contingency table and FDR is indicated on
the top of the table.

Age (FDR=7.14e-01)

UHN
(p=7.09e-01)

TCGA
(p=7.43e-01)

KI
(p=1.26e-01)

BeatAML
(p=6.03e-01)

Leucegene
(p=4.88e-01)

Total
(p=4.97e-01)

<60 >=60 <60 >=60 <60 >=60 <60 >=60 <60 >=60 <60 >=60

primitive 18 10 14 9 14 41 15 25 35 24 96 109
committed 28 21 13 12 11 13 17 20 19 19 88 85

Supplementary Table 3: Subtypes vs. WBC contingency table. Pearson’s chi-square
test p-values are indicated on the top of the contingency table and FDR is indicated on
the top of the table.

WBC (FDR=1.48e-01)

UHN
(p=3.63e-02)

TCGA
(p=5.78e-01)

KI
(p=4.41e-01)

BeatAML
(p=6.69e-01)

Leucegene
(p=2.79e-02)

Total
(p=5.63e-02)

High Low High Low High Low High Low High Low High Low

primitive 18 10 11 12 16 21 16 18 38 21 99 82
committed 18 31 15 10 10 7 12 19 15 23 70 90

Supplementary Table 4: Subtypes vs. karyotype contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

karyotype (FDR=3.24e-01)

TCGA
(p=1)

KI
(p=3.08e-01)

BeatAML
(p=6.53e-01)

Leucegene
(p=4.28e-01)

Total
(p=1.7e-01)

complex normal complex normal complex normal complex normal complex normal

primitive 1 20 11 42 8 19 11 48 31 129
committed 2 23 2 22 7 26 4 34 15 105
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Supplementary Table 5: Subtypes vs. Sex contingency table. Pearson’s chi-square
test p-values are indicated on the top of the contingency table and FDR is indicated on
the top of the table.

Sex (FDR=4.35e-02)

UHN
(p=8.74e-01)

TCGA
(p=2.36e-01)

KI
(p=3.91e-01)

BeatAML
(p=2.26e-01)

Leucegene
(p=1.48e-01)

Total
(p=1.24e-02)

F M F M F M F M F M F M

primitive 19 9 15 8 37 18 27 13 38 21 136 69
committed 31 18 11 14 13 11 19 18 18 20 92 81

Supplementary Table 6: Subtypes vs. transplant contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

transplant (FDR=8.04e-01)

UHN
(p=5.07e-01)

TCGA
(p=7.99e-01) KI BeatAML Leucegene Total

(p=6.44e-01)

No Yes No Yes No Yes No Yes No Yes No Yes

primitive 19 9 12 11 55 0 40 0 43 0 169 20
committed 38 11 15 10 23 0 36 0 32 0 144 21

Supplementary Table 7: Subtypes vs. FLT3-ITD contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

FLT3-ITD (FDR=1.06e-09)

UHN
(p=1.36e-04)

TCGA
(p=4.48e-02)

KI
(p=8.65e-01)

BeatAML
(p=2.67e-04)

Leucegene
(p=1.46e-04)

Total
(p=5.04e-11)

mutation wild mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 22 6 13 10 28 27 25 15 43 16 131 74
committed 15 34 6 19 11 13 7 30 12 26 51 122
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Supplementary Table 8: Subtypes vs. NRAS contingency table. Pearson’s chi-square
test p-values are indicated on the top of the contingency table and FDR is indicated on
the top of the table.

NRAS (FDR=2.86e-02)

TCGA
(p=1)

KI
(p=4.1e-02)

BeatAML
(p=9.01e-02)

Leucegene
(p=2.79e-01)

Total
(p=2.72e-03)

mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 2 21 2 53 1 39 4 55 9 168
committed 3 22 5 19 6 31 6 32 20 104

Supplementary Table 9: Subtypes vs. DNMT3A contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

DNMT3A (FDR=3.85e-02)

TCGA
(p=7.63e-01)

KI
(p=3.88e-03)

BeatAML
(p=9.17e-02)

Leucegene
(p=1)

Total
(p=5.49e-03)

mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 10 13 14 41 14 26 32 27 70 107
committed 13 12 15 9 21 16 21 17 70 54

Supplementary Table 10: Subtypes vs. KRAS contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

KRAS (FDR=4.35e-02)

TCGA
(p=2.63e-01)

KI
(p=1.65e-01)

BeatAML
(p=9.69e-01)

Leucegene
(p=6.96e-01)

Total
(p=9.12e-03)

mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 0 23 0 55 0 40 1 58 1 176
committed 3 22 2 22 1 36 2 36 8 116
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Supplementary Table 11: Subtypes vs. FLT3-TKD contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

FLT3-TKD (FDR=4.35e-02)

UHN
(p=3.08e-01)

TCGA
(p=1.95e-02)

KI
(p=1)

BeatAML
(p=1)

Leucegene
(p=7.7e-02)

Total
(p=1.24e-02)

mutation wild mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 0 28 0 23 4 51 9 31 4 55 17 188
committed 4 45 7 18 2 22 9 28 8 30 30 143

Supplementary Table 12: Subtypes vs. PTPN11 contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

PTPN11 (FDR=2.27e-01)

TCGA
(p=9.22e-01)

KI
(p=9.33e-02)

BeatAML
(p=6.01e-03)

Leucegene
(p=8.03e-01)

Total
(p=9.74e-02)

mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 3 20 3 52 1 39 15 44 22 155
committed 2 23 5 19 10 27 8 30 25 99

Supplementary Table 13: Subtypes vs. WT1 contingency table. Pearson’s chi-square
test p-values are indicated on the top of the contingency table and FDR is indicated on
the top of the table.

WT1 (FDR=2.29e-01)

TCGA
(p=9.79e-02)

KI
(p=5.99e-01)

BeatAML
(p=1)

Leucegene
(p=6.32e-01)

Total
(p=1.09e-01)

mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 4 19 3 52 4 36 6 53 17 160
committed 0 25 0 24 3 34 2 36 5 119
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Supplementary Table 14: Subtypes vs. IDH2 contingency table. Pearson’s chi-square
test p-values are indicated on the top of the contingency table and FDR is indicated on
the top of the table.

IDH2 (FDR=3.5e-01)

TCGA
(p=1)

KI
(p=4.67e-01)

BeatAML
(p=1)

Leucegene
(p=6.17e-01)

Total
(p=2e-01)

mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 2 21 15 40 7 33 18 41 42 135
committed 2 23 4 20 6 31 9 29 21 103

Supplementary Table 15: Subtypes vs. CEBPA contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

CEBPA (FDR=8.04e-01)

TCGA
(p=1)

KI
(p=8.57e-01)

BeatAML
(p=1)

Leucegene
(p=1)

Total
(p=6.51e-01)

mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 1 22 7 48 2 38 2 57 12 165
committed 1 24 2 22 2 35 1 37 6 118

Supplementary Table 16: Subtypes vs. ASXL1 contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

ASXL1 (FDR=8.81e-01)

TCGA KI BeatAML
(p=1)

Leucegene
(p=8.24e-01)

Total
(p=7.56e-01)

mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 0 23 0 55 1 39 0 59 1 176
committed 0 25 0 24 1 36 1 37 2 122

Supplementary Table 17: Subtypes vs. RUNX1 contingency table. Pearson’s
chi-square test p-values are indicated on the top of the contingency table and FDR
is indicated on the top of the table.

RUNX1 (FDR=1)

TCGA KI BeatAML
(p=9.69e-01)

Leucegene
(p=1)

Total
(p=1)

mutation wild mutation wild mutation wild mutation wild mutation wild

primitive 0 23 0 55 0 40 1 58 1 176
committed 0 25 0 24 1 36 0 38 1 123
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